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Abstract. The formation of Hückel–Debye screening in a qq̄ plasma is studied following as close as possible
the procedures used in the usual electric case. The equivalent of the Debye length is found, but the screening
as a result is found to be less efficient than for the Coulomb interaction, since the correlation functions
decay as the exponential of the distance raised at a power less than one.

1 Statement of the problem

The prospect that in a qq̄ plasma, produced e.g. in a high en-
ergy ion–ion collision, the multi-quark dynamics may build
up, and, beyond other more complicated features, some-
thing like Hückel–Debye screening occurs, is frequently
held, and this is also considered one of the possible in-
direct signals of the very existence of this state, because
it should have some observable effect on the production of
the final particles [1,2]. It is not evident that the qq̄ plasma
be very similar to those simple electromagnetic systems in
which the Hückel–Debye screening is produced; however,
given some similarities one could investigate whether the
prospect may be theoretically fulfilled.

While the theoretical analysis of this effect usually in-
volves the dynamics of the carrier of the interaction [2,3],
here the analysis is made in a static frame, keeping the sim-
ilarity with the electric plasma as close as possible, perhaps
even too close, so that one can see how and where the un-
avoidable differences work. The differences that are here
considered, in comparison with the electromagnetic situa-
tion are two: one dynamical – the charges are substituted
by the color charges and they are non-commuting –, the
other statistical – while the system is globally uncolored, it
is not truly neutral because realistically there will be more
quarks than antiquarks.

The similarities are not only in the statistical descrip-
tion of the system but also in the microscopic dynamics:
the interaction due to one gluon exchange and only a static
Coulomb force are considered.

At this level of approximation the conclusion is sim-
ple: a shielding effect is present also in this case, but it is
not purely exponential; the two-body correlations decay
more slowly, like {exp[−(ar)2/3]}/r and, moreover, the ex-
ponential modulates an oscillating term; the unbalancing
of quark and antiquark population seems not to have any
relevant consequence.
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Since the analogy between the non-commuting and the
commuting case plays a relevant role in the treatment, the
standard electric case will be summarized in a form partic-
ularly suitable for subsequent generalization, and then the
treatment of the colored plasma is presented and worked
out until the final result is attained. Possible refinements
are then discussed and some comparisons with other treat-
ments are outlined. Someof the analytical procedureswhich
have been used are collected in the appendices.

2 Short review of the commutative case

Finding the Hückel–Debye shielding in an assembly of elec-
trically charged particles is a well known text-book [4] pro-
cedure; however, it seems useful to present a short summary
of the treatment for commuting (electric) charges, in that
particular form which is a most convenient starting point
for generalization.

One may start from the expression of the canonical
partition function

Z =
Z0

V N

∫
e−βU(r)d3Nr. (1)

The interaction term is given by the sum of two-body
interactions. We have

U =
∑
i<j

u(|ri − rj |).

The generic term of the sum is the Coulomb interaction
u(ri,j) = αzizj/r with ri,j = |ri−rj |, in which the behavior
at ri,j → 0 has been suitably regularized in order to prevent
a divergence of the partition function. The factor Z0 takes
care of the integration over momenta and of the summation
over spin variables.

Then the integrand of the partition function (1) is ex-
panded into multiple correlations as follows:

e−βU(r) =
∏

l

D(rl) +
∑
i<j

C(2)(ri, rj)
∏

l �=i,j

D(rl)
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+
∑

i<j<k

C(3)(ri, rj , rk)
∏

l �=i,j,k

D(rl) + . . . (2)

As already said, the plasma is assumed to be uniform
in space, and for this reason the one-particle distribution
is a constant, D(ri) = R. The functions C(J) are defined
as the pure correlations of order J ; they do not embody
correlations of lower order so that

∫ C(J)d3rJ = 0; once we
have defined R it is convenient to redefine the correlations
as C(J) = RJC(J). For the two-body distribution we have

W (ri, rj) =
Z0

Z

1
V N−2

∫
e−βU(r)

∏
l �=i,j

drl

=
Z0

Z
RN

[
1 + C(2)(ri, rj)

]
. (3)

The overall normalization
∫

W (ri, rj)d3rid3rj/V 2 = 1
gives R = (Z/Z0)1/N . So the three-body distribution is

W (ri, rj , rk)

= 1 +
[
C(2)(ri, rj) + C(2)(ri, rk) + C(2)(rj , rk)

]
+C(3)(ri, rj , rk) ,

and so on.
Now we use (3) and then (2), keeping the dominant

terms, i.e. either terms with no C(J) at all or terms with the
C(2) factor1. We note also that in the integrations in d3rl

the gradient ∂u(r1, rl)/∂r1,v gives zero when integrated
alone or multiplied by a term symmetric in r1 − rl and
we obtain

∂C(r1, r2)
∂r1,v

= −β

×

∂u(r1, r2)

∂r1,v
+

1
V

∑
l �=1,2

∫
d3rl

[
∂u(r1, rl)

∂r1,v
C(rl, r2)

] ,

v = x, y, z.

Then we take a second derivative so that the Laplace
operator acts on C or on u and the equation obtained in
doing so yields the final well known result

C(r) ∝ 1
r

exp[−ar], a =
√

βαn, n =
N

V
. (4)

The length 1/a is the Debye radius of the system, and
in order for the whole treatment to be consistent we must
choose the radius at which we regularize the potential to
be much smaller than 1/a.

1 For this reason the superscript (2) will be omitted from
now on.

3 The non-commutative case

3.1 General features

The starting point is again the expression of the canonical
partition function

Z =
Z0

(3V )N
tr
∫

e−βU(r)d3Nr, U =
∑
i<j

u(|ri − rj |).(5)

The two-body interactions are matrices in the color
space and the trace operation acts only on the color indices,
which is the reason of the normalizing factor 1/3N ; flavor
variables are not considered. The factor Z0 takes care of
the integration over momenta and of the summation over
spin variables.

It is convenient to introduce the variables qi which
embody the space coordinates ri and the color indices;
thus the integration over qi indicates both the integration
over ri and the trace over the corresponding color indices.

Then the integrand of the partition function is expanded
into multiple correlations as in (1) and the plasma is as-
sumed uniform in space and isotropic in color, so the one-
particle distribution is a constant diagonal in the color
indices D(qi) = R. The functions C(J) are again defined
as the pure correlations of order J and we redefine them
as C(J) = RJC(J). So for the two-body distribution we
still have an expansion like (2), with W and C matrices in
color space. Now we would like to find an equation for the
two-body distribution W (qi, qj). In general the derivative
of U will not commute with U , because they are matrices,
so we use the representation

d
dt

eA =
∫ 1

0
exA dA

dt
e(1−x)Adx, (6)

that can be verified by expanding in a series both sides and
performing then the integration term by term.

With the use of (2), (3) and (6) it is then possible
to write an equation for the two-body correlations C(2).
The representation of (6) introduces, through the position
τ = xβ, the distributions at different temperatures, so,
when necessary, this dependence will be explicitly written
out as follows: Cτ (qi, qj) , Rτ .

From (2), by integrating over dq3 . . .dqN and taking
again the derivative with respect to r1,v, with v = x, y, z,
we get an equation for the two-body distribution:

RN
β

∂C(q1, q2)
∂r1,v

= − 1
(3V )N

∫ β

0
dτ

∫
d3(N−2)q e−τU ∂U

∂r1,v
e−(β−τ)U . (7)

The trace operation implicit in the q integration acts
here over N − 2 indices. Now (3) is used and when the
expansion of (2) is cut at two-body correlations, the result is



G. Calucci: A simple treatment of color screening in a qq̄ plasma 223

RN
β

∂Cβ(q1, q2)
∂r1,v

= − 1
(3V )N−2

∫ β

0
dτ

∫
d3(N−2)qRN

τ


1 +

∑
i<j

Cτ (qi, qj)




×
∑

l

∂u(q1, ql)
∂r1,v

RN
β−τ


1 +

∑
i<j

Cβ−τ (qi, qj)


 . (8)

In order to proceed, it is now necessary to get some
information about the constants R. By inserting the ex-
pansion, (2), into the relation

e−βU(r) = e−(β−τ)U(r)e−τU(r),

we get through an integration in
∏

dq

RN
β = (Rβ−τRτ )N (9)

×
[
1 +

N(N − 1)
2V 2

∫
Cβ−τ (qi, qj)Cτ (qi, qj)dqidqj + . . .

]
,

where the dots imply higher order or multiple correlations.
This result implies that

Rβ = Rβ−τRτ (1 + Λ),

where Λ is of second (and higher) order in the correlations
(see Appendix A). It is clear that most of the integrations
are straightforward, and we are left with an integration in
d3r, a product over a pair of SU(3) indices and an integra-
tion over τ . This last integration affects the distributions C
but not the potentials u(q1, qk). A term with two functions
C would give contributions of the same order as a term
with one three-body correlation so it is dropped; in the
integration over d3r some terms are eliminated by sym-
metry, precisely as in the electromagnetic case. The final
result is then written

∂Cβ(q1, q2)
∂r1,v

= −
∫ β

0
dτ

(
∂u(q1, q2)

∂r1,v

+
1

3V

∑
l �=1,2

∫
d3ql

[
∂u(q1, ql)

∂r1,v
Cβ−τ (ql, q2)

+ Cτ (ql, q2)
∂u(q1, ql)

∂r1,v

])
. (10)

Now a further derivative with respect to r1 is performed
so that the Laplace operator acts on C and on u; in this
last case it gives

∆u(ri, rj) = −αTδ(ri − rj).

Here α = g2/4π is the QCD coupling, T is the color
structure that will be specified. The two-body correlation

depends only on the relative distance, and one performs
the Fourier transform with respect to it and the Laplace
transform with respect to the inverse temperature β with
the result

−k2Č(s; k) =
αT

s2 +
α

3V s


∑

l �=1,2

TČ(s; k) + Č(s; k)T


 .

(11)

The check (as in Č) means both the Fourier and the
Laplace transform; the variable k is the Fourier-conjugated
of r and s is the Laplace-conjugated of β.

3.2 Details of the color structure

The factors Č(s; k) and T are matrices so their order is
relevant. In order to proceed it is necessary to specify the
color structure of the pair of quarks, so the indices will now
be displayed2. The elementary, Coulomb-like, interaction
is not diagonal in the color, so we must distinguish between
incoming and outgoing quarks; evidently we must also dis-
tinguish between quarks and antiquarks: it is consistent
with the group structure to use e.g. lower indices for in-
coming quarks and outgoing antiquarks and upper indices
for incoming antiquarks and outgoing quarks. From the
point of view of the color structure the interaction u is a
pure octet in the t-channel whereas the correlations C can
be a either a singlet or an octet for a (qq̄) pair and either
an antitriplet or a sextet for a (qq) pair, so we must build
up the corresponding projectors for these configurations.

If we have two incoming quarks with color indices a, c
and then two outgoing quarks with color indices b, d the
color structure of the interaction is3

Ib,d
a,c = 1

2

[
δd
aδb

c − 1
3 δb

aδd
c

]
= 1

4

8∑
A=1

(λA)b
a(λA)d

c ,

and the projectors for the antitriplet and the sextet are
3Πb,d

a,c = 1
2

[
δb
aδd

c − δd
aδb

c

]
, 6Πb,d

a,c = 1
2

[
δb
aδd

c + δd
aδb

c

]
.

If we have a quark–antiquark pair with incoming color
indices a, d and outgoing color indices b, c the interaction
has the opposite sign, so its color structure is −Ib,d

a,c , and
the projectors for the singlet and the octet are

1Πb,d
a,c = 1

3 δd
aδb

c,
8Πb,d

a,c =
[
δb
aδd

c − 1
3 δd

aδb
c

]
.

These projectors are normalized to the multiplicity of
the corresponding states:

1Πf,g
f,g = 1, 8Πf,g

f,g = 8, 3Πf,g
f,g = 3, 6Πf,g

f,g = 6.

It is also verified that the interaction is attractive on
the singlet and triplet states and repulsive elsewhere:

−Ia,c
b,d

1Πb,d
a,c = −4/3, −Ia,c

b,d
8Πb,d

a,c = 4/3,

2 The first latin letters a, b, . . . will be used as color indices.
3 For the details of the color representation, see e.g. [5].
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Ia,c
b,d

3Πb,d
a,c = −2, Ia,c

b,d
6Πb,d

a,c = 2.

As an intermediate step we define the unit tensor U b,d
a,c =

δb
aδd

c ; it has the property that U b,d
a,c Ia,c

b,d = 0 and

1Π = 2
3 I + 1

9 U, 8Π = − 2
3 I + 8

9 U,

3Π = −I + 1
3 U, 6Π = I + 2

3 U.

Going back to (11) it is now possible to bring it to a
more explicit form: It is necessary to distinguish between
quarks and antiquarks both in the correlation functions Č
and in the summation

∑
l remembering also that in a real

case the quark density ρ will be larger than the antiquark
density ρ̄. The color of the state appearing in the sum is
then summed isotropically.

Defining Č = M for the (qq̄) pair, Č = Q for the (qq)
pair, and Č = Q̄ for the (q̄q̄) pair, the equations are

−k2M b,d
a,c

= −αIb,d
a,c/s2 + α

[(
Qb,g

a,f (−If,d
g,c ) + Ib,g

a,fMf,d
g,c

)
ρ

+
(
M b,g

a,fIf,d
g,c + (−Ib,g

a,f )Q̄f,d
g,c

)
ρ̄
]
/s ,

−k2Qb,d
a,c (12a)

= αIb,d
a,c/s2 + α

[(
Qb,g

a,fIf,d
g,c + Ib,g

a,fQf,d
g,c

)
ρ

+
(
M b,g

a,f (−If,d
g,c ) + (−Ib,g

a,f )Mf,d
g,c

)
ρ̄
]
/s.

The equation for the (q̄q̄) pair is obtained by the in-
terchange Q ⇔ Q̄ and ρ ⇔ ρ̄ in the equation for the (qq)
pair (see Appendix B).

The tensors M, Q, Q̄ are then decomposed according
to the projectors JΠ:

M = 1ΠF1 + 8ΠF8, Q = 3ΠF3 + 6ΠF6,

Q̄ = 3ΠF̄3 + 6ΠF̄6.

Then one uses the relations, that are easily verified,

1Πb,g
a,fIf,d

g,c = 1
3 Ib,d

a,c ,
8Πb,g

a,fIf,d
g,c = − 1

3 Ib,d
a,c ,

3Πb,g
a,fIf,d

g,c = − 1
2 Ib,d

a,c ,
6Πb,g

a,fIf,d
g,c = 1

2 Ib,d
a,c .

So the RHS of (12a) contains only the Ib,d
a,c tensor, and

by projecting out the U b,d
a,c term from the LHS we get

the identities

F8 = − 1
8 F1, F6 = − 1

2 F3, F̄6 = − 1
2 F̄3 .

In this way (12) are reduced to

k2F1 − 4
3 α/s2 + α

[
ρF3 + ρ̄F̄3 + 1

2 (ρ + ρ̄)F1
]
/s = 0,

k2F3 − 2
3 α/s2 + α

[
ρF3 + 1

2 ρ̄F1
]
/s = 0,

k2F̄3 − 2
3 α/s2 + α

[
ρ̄F̄3 + 1

2 ρF1
]
/s = 0. (12b)

This system yields immediately F1 = F3 + F̄3 and is
then reduced to a two-equation system:

k2F3 − 2
3 α/s2 + α

[(
ρ + 1

2 ρ̄
)
F3 + 1

2 ρ̄F̄3
]
/s = 0,

k2F̄3 − 2
3 α/s2 + α

[(
ρ̄ + 1

2 ρ
)
F̄3 + 1

2 ρF3
]
/s = 0.(12c)

The solution depends only on the total fermionic density
n = ρ + ρ̄ and is

F3 = F̄3 = 2
3 α

1
k2s2 + nαs

= Ǧ(k2, s). (13)

From

Ǧ(k2, s) =
2
3n

[
1
s

− 1
s + αn/k2

]

we get its Laplace anti-transform:

Ĝβ(k2) =
2
3n

[
1 − exp

[−βαn/k2]] . (14)

From this expression it is possible to calculate the cor-
relation energy, but in order to understand how the corre-
lations behave in space the Fourier transform is needed:

Gβ(r2) =
1

(2π)3

∫
eik·rĜβ(k2)d3k. (15)

After performing the angular integration the result-
ing expression is estimated by means of the saddle point
method, for large values of r:

Gβ(r2) =
1

2π2r
�
∫ ∞

0
eikrĜβ(k2)kdk,

with the result (see Appendix C)

Gβ(r2) ∝ 1
r

exp
[
− 3

2 (ar/2)2/3
]

(16)

× cos
[

3
2

√
3(ar/2)2/3 − 1

3 π
]

+ . . .

The subsequent terms contain higher negative powers
of r but the same exponential behavior.

The result expressed in (16) is quite simple: it says that
the Debye shielding is present also in this case, but there are
two differences. The shielding is not a simple exponential,
the decay is in fact slower since at the exponent on find
a power of r smaller than 1, and moreover there is an
oscillating behavior, controlled by the same parameter a.
We note also that in this approximation the behavior of
the (qq̄) pair is the same as the behavior of the (qq) pair.

4 Possible developments and conclusions

The result expressed in (16) comes from particular sim-
plifications that have been used, following the idea of re-
producing what is done in the commutative case with a
minimum of further complications.
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A lot of refinements could be foreseen, but it is not obvi-
ous that they are relevant for the present level of knowledge
of the QCD plasma.

We may start from the consideration of the possible
corrections to (10). It is not difficult to correct the density
term R, see (9) and Appendix A. To be consistent we should
include also quadratic terms in C(2) in (11) and this is cer-
tainly more complicated, but if we consider twice the term
C(2) we should consider also the three-body correlation
C(3), so we see that the whole situation rapidly becomes
cumbersome4. Luckily we have seen that the two-body cor-
relations are enough to give an answer in the commutative
case and also to give a definite, different answer in the
non-commutative case.

Another point is the inclusion of the gluons in the dy-
namics: we can foresee at least three effects.
(1) The virtual gluons give rise (together with the virtual
quarks) to the presence of a running coupling constant
in (14). Until a perturbative treatment holds the variation
of α is not very strong; it is in fact logarithmic in k2, so the
further application of the stationary phase in estimating
the Fourier transform, although very complicated analyt-
ically, will not give a result very different from (16).
(2) The inclusion of real gluons present in the plasma will
modify (12) and the subsequent ones. In order to close the
system we must include also the two-gluon state, which
is certainly not interesting phenomenologically, but is dy-
namically coupled with the (qq) and (qq̄) states. Perhaps
this is the most important of the neglected effects; it has
no obvious commutative counterpart.
(3) A further effect comes from the exchange of two gluons
in the t-channel. In this case we could have also a color-
singlet exchange and some of the relations that allow the
simplification leading to (12b) and (12c) are lost, but this
is certainly a higher order effect.

This first investigation gives anyhow a reasonably trans-
parent answer; it is what was expected, but not in a trivial
way. The shielding parameter a is found to be the same
as in the commutative case, but for the numerical factor√

27/32 (see (16)). This is not strange. As far as the shield-
ing effect exists the structure of a is dictated by dimensional
requirements; the shape of the shielding is definitely differ-
ent from the commutative case; it is slightly broader, and
there is no evident a priori reason for this result.

Some observation can however be made. A falling off
slower than exponential could be obtained by means of a
superposition of Yukawa functions:

G̃ ∝ 1
r

∫
σ(µ)e−µrdµ,

provided the density σ remains positive as µ → 0; it must
however go to zero faster than any power in order to re-
produce a damping which is also faster than any power.
In particular one verifies that if the spectral density σ(µ)
behaves as exp[−C/µ2] a behavior like exp[−(ar)2/3] is

4 The extension of the formulation that has been used here
to the case of higher order correlation may not be trivial [6],
even in the commutative case.

generated. Different kinds of investigations have been per-
formed of the form of the spectral density σ(µ). There
are analyses, performed, from the beginning, with general
non-perturbative procedures [3,7,8] using strong coupling
methods. In these cases more than the effects of shielding
in the interaction of two color charges due to the presence
of other color the effects leading ultimately to the con-
finement are put into evidence, so a Yukawa fall off is a
natural outcome. The treatment presented here is a weak
coupling calculation, just in the same sense as the standard
Hückel–Debye is a weak coupling effect in QED; a possible
concrete application is foreseen in a situation where there
is a plasma with a spatial extension larger than the hadron
radius so that there is room enough to find a shielding
effect in its interior. Obviously at its borders the color is
anyhow confined and the gluon propagator will ultimately
show a spatial decay of the Yukawa type if not faster.

The result is the same for the (qq) and (qq̄) states; there
only one density parameter, given by the sum of the quark
and antiquark density; however, the treatment emphasizes
the role of the quark with respect to the role of the gluons
so it should be more appropriate for situations with a large
quark density5. The (qq) system is not interesting by itself,
but because the formation of a baryon implies certainly
three (qq) bindings and if the shielding acts in the sense of
making the binding less effective, we should expect effects
of the same size for mesons and for baryons; of course a
genuine three-body effect could be present in the baryon,
but this is beyond the scope of the present investigation.

Acknowledgements. This work has been partially supported
by the Italian Ministry: Ministero dell’Istruzione, Università
e Ricerca, by means of the Fondi per la Ricerca scientifica -
Università di Trieste.

Appendix A

Although this result is not used furthermore here it is shown
how to calculate the corrections to the density parameter R.

If we cut (9) at zero order, then we should conclude
that Rβ = eβF , with F still undetermined, but not relevant
for the subsequent calculations, and we see that since R =
(Z/Z0)1/N , this quantity, F , is a sort of constant shift of
the free energy per particle.

Now we define Rβ = eβF (1 + δβ) and we get from (9),
at first order in the correction,

1 + δβ = 1 + δβ−τ + δτ

+
[
1 +

N

2V 2

∫
Cβ−τ (qi, qj)Cτ (qi, qj)dqidqj + . . .

]
.

One integral is trivial and gives V , the other is cal-
culated by using the k representation for the correlation
functions, (15), with the result

1
(2π)3

tr
∫

d3kĜβ−τ (k2)Ĝτ (k2)

5 A similar system was considered e.g. by Csörgő. [9]
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=
4

3
√

n

(α

π

)3/2 [
β3/2 − (β − τ)3/2 − τ3/2

]
;

note that a factor 9 comes from the trace; and we get the
explicit expression

δβ =
2
√

n

3

(
αβ

π

)3/2

.

Appendix B

In this short appendix a detailed example of the construc-
tion of the interaction term as in (12) is presented for what
concerns the color variables. We have an incoming quark
a and an incoming antiquark d, and they may interact
directly becoming an outgoing quark c and an outgoing
antiquark b. This is the term −Ib,d

a,c , or the quark a to-
gether with another quark f builds up a di-quark system:
Qb,g

a,f , and this partner quark interacts then with the an-
tiquark. This is the term −If,d

g,c . We could also consider
the interaction of the initial quark with the new-coming
one: this is the term −Ib,g

a,f when this third quark forms a
(qq̄)-system with the original antiquark.

All the other terms are variations of this procedure;
these variations in particular let us foresee the possibility
for the third particle to be an antiquark. The fact that the
indices of the third quark appear always as dummy reflects
the fact that we take a symmetric mean value, which is jus-
tified only if there are many quarks and antiquarks around.

Appendix C

Here the saddle point estimate [10] of the large r behavior
of the correlation is exposed in detail.

We start from (15):

Gβ(r2) =
1

(2π)3

∫
eik·rĜβ(k2)d3k.

The angular integration is standard and yields the ex-
pression

Gβ(r2) =
1

2π2r
�
∫ ∞

0
eikrĜβ(k2)kdk

= − 1
2π2r

∆r�
∫ ∞

0
eikr 2

3n

[
1 − exp

[−βαn/k2]]dk/k.

The first addendum in the brackets is integrated ex-
plicitly and gives a result independent of r, so it drops out
in the derivative. The second is written as

K

∫
eiφdk/k, where φ = kr + iβαn/k2;

then one sets a2 = βαn and k = a2/3r−1/3p with the result
φ = (ar)2/3(p+i/p2). The stationary phase is found at the
three complex points p = 3

√
2
[−i, 1

2 (−√
3 + i), 1

2 (
√

3 + i)
]

but only the third one lies in the positive half plane; note
that the integration path must be tangent to the positive
real axis at the origin since there an essential singularity
is present, which is integrable only with this choice. So the
phase is expanded around p0 = 1

2 (
√

3 + i), with the result

iφ ≈ 3
2 (ar)3/2

[
3
√

2e2πi/3 − 1
2

3
√

4e−2πi/3(p − p0)2
]
.

The final Gaussian interaction is performed with the
substitution p = p0 +se2iπ/3 and the result, which contains
a number of non-interesting numerical factors, is

∫
eiφdk/k ≈

√
4π
3

i
1

3
√

2ar
exp

[
− 3

2 (ar/2)2/3(1 − i
√

3)
]
.

We must now apply the Laplace operator and then take
the imaginary part. A behavior like

Gβ(r2) ∝ 1
r

exp
[
− 3

2 (ar/2)2/3
]

× cos
[

3
2

√
3(ar/2)2/3 − 1

3 π
]

+ . . .

is obtained, where the dots represent terms with higher
negative powers, at least a factor r−3/2 more, but the same
exponential behavior.
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